If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+580x-2432=0
a = 8; b = 580; c = -2432;
Δ = b2-4ac
Δ = 5802-4·8·(-2432)
Δ = 414224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{414224}=\sqrt{16*25889}=\sqrt{16}*\sqrt{25889}=4\sqrt{25889}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(580)-4\sqrt{25889}}{2*8}=\frac{-580-4\sqrt{25889}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(580)+4\sqrt{25889}}{2*8}=\frac{-580+4\sqrt{25889}}{16} $
| -2+15y=-32 | | -2(1)+15y=-32 | | 9x+6+3x+2=180 | | 2(5c+2)-2c=3(12+3)+7 | | 5a-17=148 | | 30x+20=360 | | 520x=180x1750 | | 42°+3x=180 | | u^2+4=94 | | -2-3x=55 | | (15x-12)=(5x-18) | | 8q-19=5+3q | | 45+40+77=2x+x | | 1÷2x=1÷4 | | 3q-19=5+3q | | .5x-6+2=1.25x+10-9.5 | | $5.25x+$20.00=$83.00 | | (6x+13)=(14x-33) | | 40x+(15*1.5x)=960 | | 40x+(15x*1.5)=960 | | 5x+13=22 | | 2y+3y-40=3y | | (3/4)(x+8)=(1/3)(x+27) | | (3x-1)(2x+3)=(x+9)(x+8) | | .75x+6=(.33)x+9 | | 17/4+2/3|3y-9|=-4 | | 174=126-x | | (2x-1)^(x+1)^=9 | | .75x+6=(1/3)x+9 | | (x+16)+(x+18)=(6x+2) | | 4^x=99 | | 3.25x-1.5x=1.25 |